Src tyrosine kinase regulates the stem cell factor–induced breakdown of the blood–retinal barrier

نویسندگان

  • Ji-Eun Im
  • Sun-Hwa Song
  • Wonhee Suh
چکیده

PURPOSE Stem cell factor (SCF) has been recently acknowledged as a novel endothelial permeability factor. However, the mechanisms by which SCF-induced activation of the SCF cognate receptor, cKit, enhances endothelial permeability have not been fully elucidated. This study aimed to investigate the role of Src in SCF-induced breakdown of the blood-retinal barrier (BRB). METHODS In vitro endothelial permeability and in vivo retinal vascular permeability assays were performed to investigate the role of Src in SCF-induced breakdown of the BRB. Immunofluorescence staining experiments were performed to analyze the cellular distribution of phosphorylated Src and vascular endothelial (VE)-cadherin. RESULTS SCF markedly reduced electric resistance across the human retinal vascular endothelial monolayer in vitro and enhanced extravasation of dyes in murine retinal vasculature in vivo. Inhibition of cKit activation using cKit mutant mice and chemical inhibitor substantially diminished the ability of SCF to increase endothelial permeability and retinal vascular leakage. In human retinal vascular endothelial cells, SCF induced strong phosphorylation of Src and distinct localization of phosphorylated Src in the plasma membrane. Inhibition of Src activation using chemical inhibitors abolished the SCF-induced hyperpermeability of human retinal vascular endothelial cells and retinal vascular leakage in mice. In addition, treatment with Src inhibitors restored junctional expression of VE-cadherin that disappeared in SCF-treated retinal endothelial cells and retinal vasculature. CONCLUSIONS These results showed the important role of Src in mediating SCF-induced breakdown of the BRB and retinal vascular leakage. Given that increased retinal vascular permeability is a common manifestation of various ocular diseases, the SCF/cKit/Src signaling pathway may be involved in the development of the hyperpermeable retinal vasculature in many ocular disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways

Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...

متن کامل

Alpha-Tocopherol increases the proliferation of induced pluripotent stem cell derived neural progenitor cells

In addition to its antioxidant effect, Vitamin E or α–tocopherol is suggested to enhance remyelination in the animal model of non-inflammatory demyelination. In this study, the possible proliferative effect of vitamin E on human- induced pluripotent stem cell-derived neural progenitors (hiPS-NPs) and the underlying mechanisms were investigated in vitro. NPs were induced from iPS cells via 3 ste...

متن کامل

Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes.

Diabetic retinopathy is characterized by blood-retinal barrier (BRB) breakdown and neurotoxicity. These pathologies have been associated with oxidative stress and proinflammatory cytokines, which may operate by activating their downstream target p38 MAP kinase. In the present study, the protective effects of a nonpsychotropic cannabinoid, cannabidiol (CBD), were examined in streptozotocin-induc...

متن کامل

Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF.

Acute intensive insulin therapy is an independent risk factor for diabetic retinopathy. Here we demonstrate that acute intensive insulin therapy markedly increases VEGF mRNA and protein levels in the retinae of diabetic rats. Retinal nuclear extracts from insulin-treated rats contain higher hypoxia-inducible factor-1alpha (HIF-1alpha) levels and demonstrate increased HIF-1alpha-dependent bindin...

متن کامل

Tau impacts on growth-factor-stimulated actin remodeling.

The microtubule-associated protein tau interacts with the SH3 domain of non-receptor Src family protein tyrosine kinases. A potential consequence of the SH3 interaction is the upregulation of tyrosine kinase activity. Here we investigated the activation of Src or Fyn by tau, both in vitro and in vivo. Tau increased the kinase activity in in vitro assays and in transfected COS7 cells. In platele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2016